Code: 20EC4601A

III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

OPTICAL COMMUNICATIONS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

					Max.			
			BL	СО				
					Marks			
		UNIT-I						
1	a)	Explain the block diagram of Optical Fiber	L2	CO1	7 M			
		Communication with neat diagram.						
	b)	Discuss the advantages of optical fibers over	L2	CO1	7 M			
		conventional coaxial cables.						
OR								
2	a)	What is the concept of total internal	L2	CO1	7 M			
		reflection? Explain with a suitable example.						
	b)	A silica optical fiber with a core diameter	L3	CO1	7 M			
		large enough to be considered by ray theory						
		analysis has a core refractive index of 1.5						
		and cladding refractive index of 1.47.						
		Determine: (i) The critical angle at the core-						
		cladding interface. (ii) The NA for the fiber.						
		(iii) The acceptance angle in air for the						
		fiber.						

		UNIT-II			
3	a)	Explain about reach through avalanche	L2	CO2	7 M
		photo diode.			
	b)	A photo diode has quantum efficiency of	L4	CO2	7 M
		65 %. When photons of energy 1.5 x 10^{-19} J			
		are incident on it? (i) What is the wave			
		length of the photo diode? (ii) Calculate the			
		incident optical power required to obtain a			
		photo current of 2.5, when the photo diode			
		is operating as described above.			
	ı	OR	Ī	, ,	
4	a)	Explain different structure of lasers with	L2	CO2	7 M
		neat sketches			
	b)	Compare surface emitters and edge emitter	L3	CO2	7 M
		LEDS.			
		UNIT-III			
5	۵)	_ ·	1.2	CO3	7 M
	a)	What is a fiber coupler? For a 2 x 2 fiber coupler, input power is 200 µw, throughput	L3	CO3	/ IVI
		power is 90 µw, coupled power is 85 µw			
		and cross talk power is 6.3 µw. Compute			
		the performance parameters of the fiber			
		coupler.			
	b)	What are the underlying principles of the	L3	CO3	7 M
		WDM techniques?			,
		OR			
6	a)	Illustrate the operation of wavelength	L3	CO3	7 M
		division multiplexing.			
	1			1	

3 7 M 4 7 M 4 7 M									
4 7 M									
4 7 M									
OR									
4 7 M									
4 7 M									
UNIT-V									
5 7 M									
5 7 M									
b) Explain applications of Optical fiber. L2 CO5 7 M OR									
5 7 M									
5 7 M									
)									